Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychopharmacol ; 38(1): 3-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37982394

RESUMO

Classic psychedelics, including lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are potent psychoactive substances that have been studied for their physiological and psychological effects. However, our understanding of the potential interactions and outcomes when using these substances in combination with other drugs is limited. This systematic review aims to provide a comprehensive overview of the current research on drug-drug interactions between classic psychedelics and other drugs in humans. We conducted a thorough literature search using multiple databases, including PubMed, PsycINFO, Web of Science and other sources to supplement our search for relevant studies. A total of 7102 records were screened, and studies involving human data describing potential interactions (as well as the lack thereof) between classic psychedelics and other drugs were included. In total, we identified 52 studies from 36 reports published before September 2, 2023, encompassing 32 studies on LSD, 10 on psilocybin, 4 on mescaline, 3 on DMT, 2 on 5-MeO-DMT and 1 on ayahuasca. These studies provide insights into the interactions between classic psychedelics and a range of drugs, including antidepressants, antipsychotics, anxiolytics, mood stabilisers, recreational drugs and others. The findings revealed various effects when psychedelics were combined with other drugs, including both attenuated and potentiated effects, as well as instances where no changes were observed. Except for a few case reports, no serious adverse drug events were described in the included studies. An in-depth discussion of the results is presented, along with an exploration of the potential molecular pathways that underlie the observed effects.


Assuntos
Alucinógenos , Humanos , Alucinógenos/efeitos adversos , Psilocibina , Mescalina , N,N-Dimetiltriptamina , Interações Medicamentosas , Dietilamida do Ácido Lisérgico
2.
Res Synth Methods ; 15(1): 157-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37771210

RESUMO

A systematic review is a type of literature review that aims to collect and analyse all available evidence from the literature on a particular topic. The process of screening and identifying eligible articles from the vast amounts of literature is a time-consuming task. Specialised software has been developed to aid in the screening process and save significant time and labour. However, the most suitable software tools that are available often come with a cost or only offer either a limited or a trial version for free. In this paper, we report the release of a new software application, Catchii, which contains all the important features of a systematic review screening application while being completely free. It supports a user at different stages of screening, from detecting duplicates to creating the final flowchart for a publication. Catchii is designed to provide a good user experience and streamline the screening process through its clean and user-friendly interface on both computers and mobile devices. All in all, Catchii is a valuable addition to the current selection of systematic review screening applications. It enables researchers without financial resources to access features found in the best paid tools, while also diminishing costs for those who have previously relied on paid applications. Catchii is available at https://catchii.org.


Assuntos
Atenção à Saúde , Software , Poder Psicológico
3.
F1000Res ; 12: 130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767021

RESUMO

Cancer is driven by mutations of the genome that can result in the activation of oncogenes or repression of tumour suppressor genes. In acute lymphoblastic leukemia (ALL) focal deletions in IKAROS family zinc finger 1 (IKZF1) result in the loss of zinc-finger DNA-binding domains and a dominant negative isoform that is associated with higher rates of relapse and  poorer patient outcomes. Clinically, the presence of IKZF1 deletions informs prognosis and treatment options. In this work we developed a method for detecting exon deletions in genes using RNA-seq with application to IKZF1. We developed a pipeline that first uses a custom transcriptome reference consisting of transcripts with exon deletions.  Next, RNA-seq reads are mapped using a pseudoalignment algorithm to identify reads that uniquely support deletions. These are then evaluated for evidence of the deletion with respect to gene expression and other samples. We applied the algorithm, named Toblerone, to a cohort of 99 B-ALL paediatric samples including validated IKZF1 deletions. Furthermore, we developed a graphical desktop app for non-bioinformatics users that can quickly and easily identify and report deletions in IKZF1 from RNA-seq data with informative graphical outputs.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , RNA-Seq , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Éxons/genética , Mutação/genética
4.
Nat Med ; 29(7): 1681-1691, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291213

RESUMO

Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.


Assuntos
Estado Terminal , Doenças Raras , Lactente , Criança , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Multiômica , Sequenciamento Completo do Genoma/métodos , Sequenciamento do Exoma
5.
Genome Med ; 14(1): 84, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948990

RESUMO

BACKGROUND: Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual assessment of variant calls in clinical settings, current computational tools lack the ability to produce such visualizations for repeat expansions. Expanded repeats are difficult to visualize because they correspond to large insertions relative to the reference genome and involve many misaligning and ambiguously aligning reads. RESULTS: We implemented REViewer, a computational method for visualization of sequencing data in genomic regions containing long repeat expansions and FlipBook, a companion image viewer designed for manual curation of large collections of REViewer images. To generate a read pileup, REViewer reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that is most consistent with the fragment lengths and evenness of read coverage. To create appropriate training materials for onboarding new users, we performed a concordance study involving 12 scientists involved in short tandem repeat research. We used the results of this study to create a user guide that describes the basic principles of using REViewer as well as a guide to the typical features of read pileups that correspond to low confidence repeat genotype calls. Additionally, we demonstrated that REViewer can be used to annotate clinically relevant repeat interruptions by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent with triplet repeat primed PCR. CONCLUSIONS: Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in regions containing long repeat expansions. Laboratories can use REViewer and FlipBook to assess the quality of repeat genotype calls as well as to visually detect interruptions or other imperfections in the repeat sequence and the surrounding flanking regions. REViewer and FlipBook are available under open-source licenses at https://github.com/illumina/REViewer and https://github.com/broadinstitute/flipbook respectively.


Assuntos
Esclerose Amiotrófica Lateral , Sequências de Repetição em Tandem , Alelos , Esclerose Amiotrófica Lateral/genética , Exoma , Proteína do X Frágil de Retardo Mental/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
6.
Hum Mutat ; 43(7): 859-868, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395114

RESUMO

Expansions of short tandem repeats (STRs) have been implicated as the causal variant in over 50 diseases known to date. There are several tools which can genotype STRs from high-throughput sequencing (HTS) data. However, running these tools out of the box only allows around half of the known disease-causing loci to be genotyped. Furthermore, the genotypes estimated at these loci are often underestimated with maximum lengths limited to either the read or fragment length, which is less than the pathogenic cutoff for some diseases. Although analysis tools can be customized to genotype extra loci, this requires proficiency in bioinformatics to set up, limiting their widespread usage by other researchers and clinicians. To address these issues, we have developed a new software called STRipy, which is able to target all known disease-causing STRs from HTS data. We created an intuitive graphical interface for STRipy and significantly simplified the detection of STRs expansions. Moreover, we genotyped all disease loci for over two and half thousand samples to provide population-wide distributions to assist with interpretation of results. We believe the simplicity and breadth of STRipy will increase the genotyping of STRs in sequencing data resulting in further diagnoses of rare STR diseases.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Biologia Computacional , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Repetições de Microssatélites/genética , Software
7.
F1000Res ; 9: 200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32665844

RESUMO

Background: Short tandem repeats are an important source of genetic variation. They are highly mutable and repeat expansions are associated dozens of human disorders, such as Huntington's disease and spinocerebellar ataxias. Technical advantages in sequencing technology have made it possible to analyse these repeats at large scale; however, accurate genotyping is still a challenging task. We compared four different short tandem repeats genotyping tools on whole exome sequencing data to determine their genotyping performance and limits, which will aid other researchers in choosing a suitable tool and parameters for analysis. Methods: The analysis was performed on the Simons Simplex Collection dataset, where we used a novel method of evaluation with accuracy determined by the rate of homozygous calls on the X chromosome of male samples. In total we analysed 433 samples and around a million genotypes for evaluating tools on whole exome sequencing data. Results: We determined a relatively good performance of all tools when genotyping repeats of 3-6 bp in length, which could be improved with coverage and quality score filtering. However, genotyping homopolymers was challenging for all tools and a high error rate was present across different thresholds of coverage and quality scores. Interestingly, dinucleotide repeats displayed a high error rate as well, which was found to be mainly caused by the AC/TG repeats. Overall, LobSTR was able to make the most calls and was also the fastest tool, while RepeatSeq and HipSTR exhibited the lowest heterozygous error rate at low coverage. Conclusions: All tools have different strengths and weaknesses and the choice may depend on the application. In this analysis we demonstrated the effect of using different filtering parameters and offered recommendations based on the trade-off between the best accuracy of genotyping and the highest number of calls.


Assuntos
Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Cromossomos Humanos X , Exoma , Técnicas de Genotipagem , Humanos , Masculino
8.
Genome Biol ; 19(1): 121, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129428

RESUMO

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .


Assuntos
Expansão das Repetições de DNA/genética , Repetições de Microssatélites/genética , Software , Alelos , Cromossomos Humanos/genética , Loci Gênicos , Genoma Humano , Humanos , Reação em Cadeia da Polimerase
9.
Nat Neurosci ; 20(2): 260-270, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28067904

RESUMO

The prefrontal cortex helps adjust an organism's behavior to its environment. In particular, numerous studies have implicated the prefrontal cortex in the control of social behavior, but the neural circuits that mediate these effects remain unknown. Here we investigated behavioral adaptation to social defeat in mice and uncovered a critical contribution of neural projections from the medial prefrontal cortex to the dorsal periaqueductal gray, a brainstem area vital for defensive responses. Social defeat caused a weakening of functional connectivity between these two areas, and selective inhibition of these projections mimicked the behavioral effects of social defeat. These findings define a specific neural projection by which the prefrontal cortex can control and adapt social behavior.


Assuntos
Comportamento Animal/fisiologia , Tronco Encefálico/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Social , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Substância Cinzenta Periaquedutal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...